Corporate Headquarters
Vector Laboratories, Inc.
6737 Mowry Ave
Newark, CA 94560
United States
Histone H2A is composed of non-allelic variants. The term "Histone H2A" is intentionally non-specific and refers to a variety of closely related proteins that vary often by only a few amino acids. Notable variants include H2A.1, H2A.2, H2A.X, and H2A.Z. Changes in variant composition occur in differentiating cells. This was observed in differentiating neurons during synthesis and turnover; changes in variant composition were seen among the H2A.1 histone. The only variant that remained constant in the neural differentiation was variant H2AZ. H2AZ is a variant that exchanges with conventional H2A core protein; this variant is important for gene silencing. Physically, there are small changes on the surface area of the nucleosome that make the histone differ from H2A. Recent research suggests that H2AZ is incorporated into the nucleosome using a Swr1, a Swi2/Snf2- related adenosine triphosphatase. Another H2A variant that has been identified is H2AX. This variant has a C-terminal extension that’s utilized for DNA repair. The method of repair this variant employs is non-homologous end joining. Direct DNA damage can induce changes to the sequence variants. Experiments performed with ionizing radiation linked ?- phosphorylation of H2AX to DNA double-strand break. A large amount of chromatin is involved with each DNA double-strand break; a response to DNA damage is the formation of ?- H2AX. Lastly, MacroH2A variant is a variant that is similar to H2A; it is encoded by the H2AFY gene. This variant differs from H2A because of the addition of a fold domain in its C-terminal tail. MacroH2A is expressed in the inactive X chromosome in females.
Target Name: | Histone H2A |
If you do not find the reagent or information you require, please contact Customer.Support@LSBio.com to inquire about additional products in development.