NAD⁺/NADH Assay Kit (Fluorometric)

LS-K263-100 (100 Tests) • Store at -20°C

Introduction

Pyridine nucleotides play an important role in metabolism and, thus, there is continual interest in monitoring their concentration levels. Quantitative determination of NAD+/NADH has applications in research pertaining to energy transformation and redox state of cells or tissue. This NAD+/NADH assay kit is based on a lactate dehydrogenase cycling reaction, in which the formed NADH reduces a probe into a highly fluorescent product. The fluorescence intensity of this product, measured at $\lambda_{\text{ex/em}} = 530/585$ nm, is proportional to the NAD+/NADH concentration in the sample. This assay is highly specific for NAD+/NADH with minimal interference (<1%) by NADP+/NADPH and is a convenient Method to measure NAD, NADH and their ratio.

Key Features

- Sensitive and accurate. Detection limit of 0.02 μM and linearity up to 1 μM NAD+/NADH in 96-well plate assay.
- Convenient. The procedure involves adding a single working reagent, and reading the fluorescence at time zero and 10 min.
- High-throughput. Can be readily automated as a high-throughput 96-well plate assay for thousands of samples per day.

Applications

Direct Assays: NAD+/NADH concentrations and ratios in cell or tissue extracts.

Components

	K263-100
Component	100 Tests
Assay Buffer	10 mL
Lactate	1.5 mL
Probe	750 μL
NAD/NADH Extraction Buffers	12 mL each
Enzyme A	120 μL
Enzyme B	120 μL
NAD Standard	0.5 mL

Materials Not Supplied

Pipetting (multi-channel) devices. Black, flat-bottom 96-well plates and fluorescent plate reader capable of reading at $\lambda_{\text{ex/em}} = 530/585 \text{ nm}$.

Storage

The kit is shipped on ice. Store all reagents at -20°C. Shelf life: 6 months after receipt.

NAD⁺/NADH Assay Kit (Fluorometric)

LS-K263-100 (100 Tests) • Store at -20°C

Assay Procedure

Note: This kit can also be used directly on cells cultured in 96 well plates.

Procedure

- 1. Sample Preparation. For tissues weigh ~20 mg tissue for each sample, wash with cold PBS. For cell samples, wash cells with cold PBS and pellet ~10 5 cells for each sample. Homogenize samples (either tissue or cells) in a 1.5 mL Eppendorf tube with either 100 μ L NAD extraction buffer for NAD determination or 100 μ L NADH extraction buffer for NADH determination. Heat extracts at 60°C for 5 min and then add 20 μ L Assay Buffer and 100 μ L of the opposite extraction buffer to neutralize the extracts. Briefly vortex and spin the samples down at 14,000 x g for 5 min. Use supernatant for NAD/NADH assays. Determination of both NAD and NADH concentrations requires extractions from two separate samples.
- 2. Calibration Curve. Prepare 5000 μ L 1 μ M NAD Premix by mixing 5 μ L 1 mM Standard and 4995 μ L distilled water. Dilute standard as follows.

No	Premix + H₂O	NAD (μM)
1	100 μL + 0 μL	1.0
2	60 μL + 40 μL	0.6
3	30 μL + 70 μL	0.3
4	0 μL + 100 μL	0

Transfer 50 µL standards into wells of a black flat-bottom 96-well plate.

- 3. Samples. Add 50 µL of each sample in separate wells.
- 4. Reagent Preparation. For each reaction well, prepare Working Reagent by mixing 40 μL Assay Buffer, 1 μL Enzyme A, 1 μL Enzyme B, 10 μL Lactate and 5 μL Probe. Fresh reconstitution is recommended.
- 5. Reaction. Add 50 μL Working Reagent per well quickly. Tap plate to mix.
- 6. Read fluorescence at $\lambda_{\text{ex/em}}$ = 530/585 nm for time "zero" (F₀) and F₁₀ after a 10-min incubation at room temperature. Protect plate from light during this incubation.

Calculations

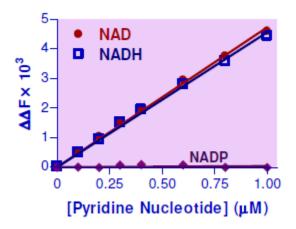
First compute the ΔF for each standard and sample by subtracting F_0 from F_{10} . Plot the standard ΔF 's and determine the slope. The NAD(H) concentration of the sample is computed as follows:

$$[NAD(H)] = \frac{\Delta F_{SAMPLE} - \Delta F_{BLANK}}{Slope (\mu M^{-1})} \times n \quad (\mu M)$$

where ΔF_{SAMPLE} and ΔF_{BLANK} are the change in fluorescence intensity values of the Sample and Blank (STD 4) respectively. Slope is the slope of the standard curve and n is the dilution factor (if necessary).

Note: If the sample ΔF values are higher than the ΔF value for the 1 μM standard, dilute sample in distilled water and repeat this assay. Multiply the results by the dilution factor.

NAD⁺/NADH Assay Kit (Fluorometric)



General Considerations

- 1. At these concentrations, the standard curves for NAD and NADH are identical. Since NADH in solution is unstable, we provide only NAD as the standard.
- 2. This assay is based on an enzyme-catalyzed kinetic reaction. Addition of Working Reagent should be quick and mixing should be brief but thorough. Use of multi-channel pipettor is recommended.
- 3. The following substances interfere and should be avoided in sample preparation. EDTA (>0.5 mM), ascorbic acid, SDS (>0.2%), sodium azide, NP-40 (>1%) and Tween-20 (>1%).
- 4. For samples containing higher than 100 μM pyruvate, we recommend using an internal standard.

Sample Data

Version: V.08.09.2018