NAD⁺/NADH Assay Kit (Colorimetric)

LS-K246-100 (100 Tests) • Store at -20°C

Introduction

Pyridine nucleotides play an important role in metabolism and, thus, there is continual interest in monitoring their concentration levels. Quantitative determination of NAD+/NADH has applications in research pertaining to energy transformation and redox state of cells or tissue. Simple, direct and automation-ready procedures for measuring NAD+/NADH concentration are very desirable. This NAD+/NADH assay kit is based on a lactate dehydrogenase cycling reaction, in which the formed NADH reduces a formazan (MTT) reagent. The intensity of the reduced product color, measured at 565 nm, is proportional to the NAD+/NADH concentration in the sample. This assay is highly specific for NAD+/NADH and with minimal interference (<1%) by NADP+/NADPH. Our assay is a convenient Method to measure NAD, NADH and their ratio.

Key Features

- Sensitive and accurate. Detection limit of 0.05 μM and linearity up to 10 μM NAD+/NADH in 96-well plate assay.
- Convenient. The procedure involves adding a single working reagent, and reading the optical density at time zero and 15 min at room temperature.
- High-throughput. Can be readily automated as a high-throughput 96-well plate assay for thousands of samples per day.

Applications

Direct Assays: NAD+/NADH concentrations and ratios in cell or tissue extracts.

Components

	K246-100
Component	100 Tests
Assay Buffer	10 mL
Enzyme A	120 μL
Enzyme B	120 μL
Lactate	1.5 mL
MTT Solution	1.5 mL
NAD Standard	0.5 mL
NAD(P)/NAD(P)H Extraction Buffers	12 mL (each)

Materials Not Supplied

Pipetting (multi-channel) devices. Clear-bottom 96-well plates (e.g. Corning Costar) and plate reader.

Storage

The kit is shipped on ice. Store all reagents at -20°C. Shelf life: 6 months after receipt.

NAD⁺/NADH Assay Kit (Colorimetric)

LS-K246-100 (100 Tests) • Store at -20°C

Assay Procedure

- 1. Sample Preparation. For tissues weigh ~20 mg tissue for each sample, wash with cold PBS. For cell samples, wash cells with cold PBS and pellet ~10 5 cells for each sample. Homogenize samples (either tissue or cells) in a 1.5 mL Eppendorf tube with either 100 μ L NAD extraction buffer for NAD determination or 100 μ L NADH extraction buffer for NADH determination. Heat extracts at 60°C for 5 min and then add 20 μ L Assay Buffer and 100 μ L of the opposite extraction buffer to neutralize the extracts. Briefly vortex and spin the samples down at 14,000 rpm for 5 min. Use supernatant for NAD/NADH assays. Determination of both NAD and NADH concentrations requires extractions from two separate samples.
- 2. Calibration Curve. Prepare 500 μ L 10 μ M NAD Premix by mixing 5 μ L 1 mM Standard and 495 μ L distilled water. Dilute standard as follows.

No	Premix + H₂O	NAD (μM)
1	100 µL + 0 µL	10
2	60 µL + 40 µL	6
3	30 µL + 70 µL	3
4	0 µL + 100 µL	0

Transfer 40 µL standards into wells of a clear flat-bottom 96-well plate.

- 3. Samples. Add 40 µL of each sample in separate wells.
- 4. Reagent Preparation. For each well of reaction, prepare Working Reagent by mixing 60 μ L Assay Buffer, 1 μ L Enzyme A, 1 μ L Enzyme B, 14 μ L Lactate and 14 μ L MTT. Fresh reconstitution is recommended.
- 5. Reaction. Add 80 µL Working Reagent per well quickly. Tap plate to mix briefly and thoroughly.
- 6. Read optical density (OD_0) for time "zero" at 565 nm (520-600nm) and OD_{15} after a 15-min incubation at room temperature.

Calculations

First compute the Δ OD for each standard and sample by subtracting OD₀ from OD₁₅. Plot the standard Δ OD's and determine the slope. The NAD(H) concentration of the sample is computed as follows:

$$[NAD(H)] = \frac{\Delta OD_{SAMPLE} - \Delta OD_{BLANK}}{Slope (\mu M^{-1})} \times n \quad (\mu M)$$

where ΔOD_{SAMPLE} and ΔOD_{BLANK} are the change in optical density values of the Sample and Blank (STD 4) respectively. Slope is the slope of the standard curve and n is the dilution factor (if necessary).

Note: If the sample Δ OD values are higher than the Δ OD value for the 10 μ M standard, dilute sample in distilled water and repeat this assay. Multiply the results by the dilution factor.

NAD+/NADH Assay Kit (Colorimetric)

LS-K246-100 (100 Tests) • Store at -20°C

General Considerations

- 1. At these concentrations, the standard curves for NAD and NADH are identical. Since NADH in solution is unstable, we provide only NAD as the standard.
- 2. This assay is based on an enzyme-catalyzed kinetic reaction. Addition of Working Reagent should be quick and mixing should be brief but thorough. Use of multi-channel pipettor is recommended.
- 3. The following substances interfere and should be avoided in sample preparation. EDTA (>0.5 mM), ascorbic acid, SDS (>0.2%), sodium azide, NP-40 (>1%) and Tween-20 (>1%).
- 4. For samples containing higher than 100 μ M pyruvate, we recommend using an internal standard.

Sample Data

Standard Curve in 96-well plate assay

Version: V.08.09.2018